Numerical Solutions of Boundary Value Problems with Finite Difference Method.pdf

Two-Point Boundary Value Problems: Lower and Upper Solutions

This book introduces the method of lower and upper solutions for ordinary differential equations. This method is known to be both easy and powerful to solve second order boundary value problems. Besides an extensive introduction to the method, the first half of the book describes some recent and more involved results on this subject. These concern the combined use of the method with degree theory, with variational methods and positive operators. The second half of the book concerns applications. This part exemplifies the method and provides the reader with a fairly large introduction to the problematic of boundary value problems. Although the book concerns mainly ordinary differential equations, some attention is given to other settings such as partial differential equations or functional differential equations. A detailed history of the problem is described in the introduction. · Presents the fundamental features of the method · Construction of lower and upper solutions in problems · Working applications and illustrated theorems by examples · Description of the history of the method and Bibliographical notes

Boundary Value Problems

Boundary Value Problems is a translation from the Russian of lectures given at Kazan and Rostov Universities, dealing with the theory of boundary value problems for analytic functions. The emphasis of the book is on the solution of singular integral equations with Cauchy and Hilbert kernels. Although the book treats the theory of boundary value problems, emphasis is on linear problems with one unknown function. The definition of the Cauchy type integral, examples, limiting values, behavior, and its principal value are explained. The Riemann boundary value problem is emphasized in considering the theory of boundary value problems of analytic functions. The book then analyzes the application of the Riemann boundary value problem as applied to singular integral equations with Cauchy kernel. A second fundamental boundary value problem of analytic functions is the Hilbert problem with a Hilbert kernel; the application of the Hilbert problem is also evaluated. The use of Sokhotski's formulas for certain integral analysis is explained and equations with logarithmic kernels and kernels with a weak power singularity are solved. The chapters in the book all end with some historical briefs, to give a background of the problem(s) discussed. The book will be very valuable to mathematicians, students, and professors in advanced mathematics and geometrical functions.

Boundary Value Problems for Systems of Differential, Difference and Fractional Equations - Positive Solutions

Boundary Value Problems for Systems of Differential, Difference and Fractional Equations: Positive Solutions discusses the concept of a differential equation that brings together a set of additional constraints called the boundary conditions. As boundary value problems arise in
several branches of math given the fact that any physical differential equation will have them, this book will provide a timely presentation on the topic. Problems involving the wave equation, such as the determination of normal modes, are often stated as boundary value problems. To be useful in applications, a boundary value problem should be well posed. This means that given the input to the problem there exists a unique solution, which depends continuously on the input. Much theoretical work in the field of partial differential equations is devoted to proving that boundary value problems arising from scientific and engineering applications are in fact well-posed. Explains the systems of second order and higher orders differential equations with integral and multi-point boundary conditions Discusses second order difference equations with multi-point boundary conditions Introduces Riemann-Liouville fractional differential equations with uncoupled and coupled integral boundary conditions

Elementary Differential Equations

Homework help! Worked-out solutions to select problems in the text.

Numerical Solutions of Boundary Value Problems of Non-linear Differential Equations

The book presents in comprehensive detail numerical solutions to boundary value problems of a number of non-linear differential equations. Replacing derivatives by finite difference approximations in these differential equations leads to a system of non-linear algebraic equations which we have solved using Newton’s iterative method. In each case, we have also obtained Euler solutions and ascertained that the iterations converge to Euler solutions. We find that, except for the boundary values, initial values of the 1st iteration need not be anything close to the final convergent values of the numerical solution. Programs in Mathematica 6.0 were written to obtain the numerical solutions.

Boundary Value Problems for Differential Equations

Numerical Solutions of Boundary Value Problems with Finite Difference Method

Containing an extensive illustration of the use of finite difference method in solving boundary value problem numerically, a wide class of differential equations have been numerically solved in this book.

Global Solution Branches of Two Point Boundary Value Problems

The book deals with parameter dependent problems of the form $u^{\prime\prime}+f(u)=0$ on an interval with homogeneous Dirichlet or Neuman boundary conditions. These problems have a family of solution curves in the (u,\ast)-space. By examining the so-called time maps of the problem the shape of these curves is obtained which in turn leads to information about the number of solutions, the dimension of their unstable manifolds (regarded as stationary solutions of the
corresponding parabolic problem) as well as possible orbit connections between them. The methods used also yield results for the period map of certain Hamiltonian systems in the plane. The book will be of interest to researchers working in ordinary differential equations, partial differential equations and various fields of applications. By virtue of the elementary nature of the analytical tools used it can also be used as a text for undergraduate and graduate students with a good background in the theory of ordinary differential equations.

Finite Element Solution of Boundary Value Problems - Theory and Computation

Finite Element Solution of Boundary Value Problems: Theory and Computation provides an introduction to both the theoretical and computational aspects of the finite element method for solving boundary value problems for partial differential equations. This book is composed of seven chapters and begins with surveys of the two kinds of preconditioning techniques, one based on the symmetric successive overrelaxation iterative method for solving a system of equations and a form of incomplete factorization. The subsequent chapters deal with the concepts from functional analysis of boundary value problems. These topics are followed by discussions of the Ritz method, which minimizes the quadratic functional associated with a given boundary value problem over some finite-dimensional subspace of the original space of functions. Other chapters are devoted to direct methods, including Gaussian elimination and related methods, for solving a system of linear algebraic equations. The final chapter continues the analysis of preconditioned conjugate gradient methods, concentrating on applications to finite element problems. This chapter also looks into the techniques for reducing rounding errors in the iterative solution of finite element equations. This book will be of value to advanced undergraduates and graduates in the areas of numerical analysis, mathematics, and computer science, as well as for theoretically inclined workers in engineering and the physical sciences.

Analytical Solution Methods for Boundary Value Problems

Analytical Solution Methods for Boundary Value Problems is an extensively revised, new English language edition of the original 2011 Russian language work, which provides deep analysis methods and exact solutions for mathematical physicists seeking to model germane linear and nonlinear boundary problems. Current analytical solutions of equations within mathematical physics fail completely to meet boundary conditions of the second and third kind, and are wholly obtained by the defunct theory of series. These solutions are also obtained for linear partial differential equations of the second order. They do not apply to solutions of partial differential equations of the first order and they are incapable of solving nonlinear boundary value problems. Analytical Solution Methods for Boundary Value Problems attempts to resolve this issue, using quasi-linearization methods, operational calculus and spatial variable splitting to identify the exact and approximate analytical solutions of three-dimensional non-linear partial differential equations of the first and second order. The work does so uniquely using all analytical formulas for solving equations of mathematical physics without using the theory of series. Within this work, pertinent solutions of linear and nonlinear boundary problems are stated. On the basis of quasi-linearization, operational calculation and splitting on spatial variables, the exact and approached analytical solutions of the equations are obtained in private
derivatives of the first and second order. Conditions of unequivocal resolvability of a nonlinear boundary problem are found and the estimation of speed of convergence of iterative process is given. On an example of trial functions results of comparison of the analytical solution are given which have been obtained on suggested mathematical technology, with the exact solution of boundary problems and with the numerical solutions on well-known methods. Discusses the theory and analytical methods for many differential equations appropriate for applied and computational mechanics researchers. Addresses pertinent boundary problems in mathematical physics achieved without using the theory of series. Includes results that can be used to address nonlinear equations in heat conductivity for the solution of conjugate heat transfer problems and the equations of telegraph and nonlinear transport equation. Covers select method solutions for applied mathematicians interested in transport equations methods and thermal protection studies. Features extensive revisions from the Russian original, with 115+ new pages of new textual content.